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Abstract. This paper is concerned with a practical algorithm for solving low rank linear multiplicat-
ive programming problems and low rank linear fractional programming problems. The former is the
minimization of the sum of the product of two linear functions while the latter is the minimization of
the sum of linear fractional functions over a polytope. Both of these problems are nonconvex minim-
ization problems with a lot of practical applications. We will show that these problems can be solved
in an efficient manner by adapting a branch and bound algorithm proposed by Androulakis–Maranas–
Floudas for nonconvex problems containing products of two variables. Computational experiments
show that this algorithm performs much better than other reported algorithms for these class of
problems.

Key words: Linear multiplicative programming problem, Linear fractional programming problem,
Global minimization, Branch and bound method, Linear underestimating function

1. Introduction

In this paper, we will discuss a branch and bound algorithm for solving rank-p

linear multiplicative programming problems(LMP):∣∣∣∣∣∣∣
minimize

p∑
j=1

(ctjx+ cj0)(dtjx+ dj0)

subject to x ∈ X,
(1)

and rank-p linear fractional programming problems(LFP):∣∣∣∣∣∣∣
minimize

p∑
j=1

ctjx+ cj0

dtjx+ dj0

subject to x ∈ X,
(2)

wherecj ,dj ∈ <n, cj0, dj0 ∈ <1 (j = 1, . . . , p), x ∈ <n andX ⊂ <n is a
polytope.
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Rank-p LMP (2) is a special case of nonconvex quadratic programming prob-
lems, which is known to be NP-hard even whenp = 1 [19]. Rank-1 LFP, on
the other hand, is a quasi-convex minimization problem, whose local solution is a
global solution. However, whenp > 2, the problem (2) is a nonconvex minimin-
zation problem with multiple local minima.

The problems (1) and (2) have a lot of interesting applications in engineering
and finance. Readers are referred to [1, 11, 12, 15] for such applications. These
problems attracted attention of researchers in global optimization, where one of
its promising research direction is to construct efficient algorithms for practical
problems by exploiting their special structure (see [11]).

To avoid technical complication, we assume that the condition:

ctjx+ cj0 > 0,dtjx+ dj0 > 0, ∀ x ∈ X, j = 1, . . . , p, (3)

holds throughout the paper. Let us note that this condition is valid for almost all
practical applications.

Let us briefly review some of the earlier algorithmic studies on LMP’s (1) and
LFP’s (2). For a recent survey on LFP’s, readers are referred to [21].

There exists a number of very efficient algorithms for solving rank-1 LMP’s.
For example, variants of parametric simplex algorithms have been developed by
Konno–Kuno [13], Swarup [22] for this problem. In particular, a parametric sim-
plex algorithm proposed in [13] can solve rank-1 LMP’s in no more than twice as
much computation time than that of solving a linear program: minimize{ctjx +
cj0|x ∈ X}. Further, it has been proved that the amount of computation time of this
algorithm is average polynomial order under some assumption on the probability
distribution of the problem data [11].

Whenp > 2, LMP’s are much more difficult. A number of practical algorithms
have been developed by Kuno-Konno [18], Phong-An-Tao [20] and others. Com-
putation time grows exponentially asp increases. But it has been demonstrated in
[20] that the careful implementation of a branch and bound algorithm using convex
underestimating function of Phong et al. can solve the LMP’s up to, sayp = 10.

Computational studies of rank-p linear fractional programming problem (2) are
less intensive than (1). Whenp = 1, Charnes and Cooper [5] developed an efficient
algorithm using a simplex type procedure. Whenp = 2, Konno–Yajima [16] and
Hirsche [8] proposed a parametric simplex algorithm and successive underestim-
ation method, both of which can successfully solve (2) in an efficient manner.
Also, Konno–Abe [12] proposed a heuristic algorithm forp = 3 by employing
Konno–Yajima [16] algorithm for solving rank-2 problems.

When p > 3, Konno–Yamashita applied generalized convex multiplicative
programming algorithm [17] and showed that it can solve the problem (2) up to
p = 5. Also Falk-Polacsay [7] proposed yet another parametric approach, whose
efficiency has not been tested.



BRANCH AND BOUND ALGORITHM FOR SOLVING LMP AND LFP PROBLEMS 285

2. Convex Relaxation

Let us consider a quadratically constrained linear programming problem:

(P0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize g(x) =
n∑
j=1

c0jxj

subject to
n∑
j=1

aij xj +
n∑
j=1

n∑
k=1

qijkxj xk 6 bi, i = 1, . . . , m,

α0
j 6 xj 6 β0

j , j = 1, . . . , n,
x ∈ X.

(4)

If, at least oneQi = (qijk) ∈ <n×n is not positive semi-definite, then this is a non
convex minimization problem whose local solution may not be a global solution.

Let us note that both LMP’s and LFP’s can be put in the form of (4). In fact,
rank-p LMP (1) is equivalent to∣∣∣∣∣∣∣∣∣

minimize xn+1

subject to
p∑
j=1

(ctjx+ cj0)(dtjx+ dj0) 6 xn+1,

x ∈ X.
(5)

Also, rank-p LFP (2) can be converted to∣∣∣∣∣∣
minimize xn+1 + xn+2 + · · · + xn+p
subject to (ctjx+ cj0)− xn+j (dtjx+ dj0) 6 0, j = 1, . . . , p,

x ∈ X,
(6)

under assumption (3).
The basic strategy for solving (4) is to introduce a simple convex underestim-

ating function for each nonconvex termqijkxj xk in the rectangular regionD0
jk ≡

[α0
j , β

0
j ] × [α0

k , β
0
k ] by employing the scheme proposed in Andourakis et al. [3].

Whenj = k, we obtain underestimating convex function(convex envelope)

f ijj (xj , xj ) =
{
qijjx

2
j if qijj > 0,

qijj (α
0
j + β0

j )xj − qijjα0
j β

0
j if qijj 6 0,

(7)

as shown in Figure 1.

PROPOSITION 1.Let

f ijk(xj , xk) =
{
qijk max{α0

j xk + α0
kxj − α0

jα
0
k , β

0
j xk + β0

k xj − β0
j β

0
k } if qijk > 0,

qijk min{α0
j xk + β0

k xj − α0
j β

0
k , β

0
j xk + α0

kxj − β0
j α

0
k} if qijk 6 0.

(8)



286 HIROSHI KONNO AND KENJI FUKAISHI

Figure 1. Function−x2 and its convex envelope.

x
y

Figure 2. Graph of the functionxy.

f ijk(xj , xk) is a convex envelope of the quadratic functionqijkxj xk. In particular,
the following relation holds:

f ijk(xj , xk) = qijkxj xk, ∀(xj , xk) on D0
jk, (9)

|f ijk(xj , xk)− qijkxj xk| 6 |qijk|
(αj − βj )(αk − βk)

4
, ∀(xj , xk) on D0

jk.

(10)

Proof.See [2,3] 2

We see from (10) that the maximal difference ofqijkxj xk and f ijk(xj , xk) is
proportional to the area of the rectangleD0

jk. Figure 2 and 3 illustrates the relation
of the functionqijkxj xk andf ijk(xj , xk).
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Figure 3. Convex envelope of the functionxy.

Let us define a convex minimization problem:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize g(x) =
n∑
j=1

c0jxj

subject to
n∑
j=1

aijxj +
n∑
j=1

n∑
k=1

f ijk(xj , xk) 6 bi, i = 1, . . . , m,

α0
j 6 xj 6 β0

j , j = 1, . . . , n,
x ∈ X.

(11)

PROPOSITION 2.
(i) If (11) is infeasible, then (4) is also infeasible.
(ii) Let x̂ be an optimal solution of (11).Then

(a) g(x̂) gives the lower bound of the minimal value ofg(x) of (4).
(b) x̂ is an optimal solution of the problem (4) ifx̂ is a feasible solution of (4).

3. A Branch and Bound Algorithm

We showed in the previous section how to calculate a lower bound of the optimal
value of the problem (4). Let us note that the problem (11) is a convex programming
problem, so that it can be solved in an efficient manner. Therefore we can develop
a branch and bound method if we can provide:
(i) an efficient method to calculate a feasible solution of (4) which gives an upper

bound of the optimal solution of (4),
(ii) a convergent (exhaustive) branching procedure.

It is generally not easy to calculate a feasible solution of nonconvex minimiz-
ation problem (4). Fortunately, however any solutionx̃ ∈ X such that̃x ∈ [ααα, βββ ]
gives a feasible solution of (5) and (6). To see this let

x̃n+1 =
p∑
j=1

(ctj x̃+ cj0)(dtj x̃+ dj0).
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Then(x̃, x̃n+1) is a feasible solution of (5). Also, let

x̃n+j = (ctj x̃+ cj0)/(dtj x̃+ dj0), j = 1, . . . , p.

Then(x̃, x̃n+1, . . . , x̃n+p) is a feasible solution of (6).
One standard method of branching is the following bisection of the hyper-

rectangleD into two subrectangles by using the longest edge. Let

β0
t − α0

t = max[β0
j − α0

j |j = 1, . . . , n]

and letβ1
t = (α0

t + β0
t )/2. We partitionD ≡ [ααα0, βββ 0] into two rectanglesD1 ≡

[ααα1, βββ 1] andD2 ≡ [ααα2, βββ 2] by defining

α1
j = α0

j , j = 1, . . . , n,

β1
j =

{
β0
j , j 6= s,
(α0
t + β0

t )/2, j = t,

α2
j =

{
α1
j , j 6= s,
(α0
t + β0

t )/2, j = t,
β2
j = β0

j , j = 1, . . . , n.

Branch and Bound Algorithm

Step 0. Letεc > 0, εf > 0, L = −∞,P = {(P0)}. Calculate a locally optimal
solutionx̂ of (P0) by applying appropriate local search algrithm. LetL0 =
U = g(x̂).

Step 1. IfP = φ, then stop. Otherwise choose a problem(Ps) ∈ P such that
Ls = min{Lj |Pj ∈ P }:

(Ps)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize g(x) =
n∑
j=1

c0j xj

subject to
n∑
j=1

aij xj +
n∑
j=1

n∑
k=1

qijkxjxk 6 bi, i = 1, . . . , m,

αsj 6 xj 6 βsj , j = 1, . . . , n,
x ∈ X.

(12)

P = P \ (Ps).
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Step 2. Generate two subproblems(Pl+1) and(Pl+2):

(Pl+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize g(x) =
n∑
j=1

c0jxj

subject to
n∑
j=1

aij xj +
n∑
j=1

n∑
k=1

qijkxjxk 6 bi, i = 1, . . . , m,

αl+1
j 6 xj 6 βl+1

j , j = 1, . . . , n,
x ∈ X.

(Pl+2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize g(x) =
n∑
j=1

c0jxj

subject to
n∑
j=1

aij xj +
n∑
j=1

n∑
k=1

qijkxjxk 6 bi, i = 1, . . . , m,

αl+2
j 6 xj 6 βl+2

j , j = 1, . . . , n,
x ∈ X.

where

αl+1
j = αsj , j = 1, . . . , n,

βl+1
j =

{
βsj , j 6= d,
(αsj + βsj )/2, j = d,

αl+2
j =

{
αsj , j 6= d,
(αsj + βsj )/2, j = d,

βl+2
j = βsj , j = 1, . . . , n,

P = P ∪ {(Pl+1), (Pl+2)}\(Ps)
s : = s + 1

βsd − αsd = max[βsj − αsj |j = 1, . . . , n]
Step 3. Generate(P̄s)(s = l + 1, l + 2) by replacing nonconvex termqijkxjxk by

convex underestimating functionf ijk(xj , xk).
Step 4. Solve(P̄s)(s = l + 1, l + 2). If (P̄s) is infeasible, delete (̄Ps) from P .

Otherwise letxk be an optimal solution of (̄Ps). If

n∑
j=1

n∑
k=1

qijkx
s
j x

s
k −

n∑
j=1

n∑
k=1

f ijk(x
s
j , x

s
k ) 6 εf ,

thenUs =∑n
j=1 c0jx

s
j and go to Step 5. OtherwiseLs =∑n

j=1 c0j x
s
j and

go to Step 6.
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Step 5. IfUs < U , thenx̃ = xs , U = ∑n
j=1 c0jx

s
j and delete all subproblem (Pt )

from P such thatLt > U .
Step 6. L = minLs. If U − L > εc, go to Step 1. Otherwiseεc-convergence has

been reached. The global minimum solutionx∗ is given byx̃. 2
THEOREM 1. The branch and bound algorithm proposed above terminates in
finitely many steps.

Proof. The subdivision scheme is exhaustive as proved in Konno–Thach–Tuy
[11] (Corollary 6.3) or Horst–Tuy [10]. 2

4. Computational Experiments

4.1. GENERATION OF TEST PROBLEMS

We tested the algorithm proposed in the previous section on rank-p LMP’s:∣∣∣∣∣∣∣
minimize

p∑
j=1

(ctjy+ cj0)(dtjy+ dj0)

subject to Ay 6 b, y > 0,

(13)

and rank-p LFP’s:

minimize
p∑
j=1

ctjy+ cj0

dtjy+ dj0

subject to Ay 6 b, y > 0,

(14)

wherecj ,dj , y ∈ <n, cj0, dj0 ∈ <1 (j = 1, . . . , p),A = (aij ) ∈ <m×n,b ∈ <m.
All elements of the matrixA and vectorb, ci ’s, di ’s are randomly generated from
the uniform distribution in certain intervals:A ∈ [0.01,1.0],b ∈ [0.1,10.0], so
that the feasible region is always non-empty and bounded. Also, we choseci ∈
[−0.1,0.1],di ∈ [−0.1,0.1], ∀i. Also, cj0, dj0 are chosen in such a way that
the condition (3) is satisfied. Ten test problems are generated for each size of the
parameter(p, n,m).

Performance of the algorithm can be different for other class of test problems.
But the main purpose of the test is to compare the performance of the present
algorithm with earlier algorithms, where the above class of problems are used as
test problems.



BRANCH AND BOUND ALGORITHM FOR SOLVING LMP AND LFP PROBLEMS 291

4.2. RANK-p LINEAR MULTIPLICATIVE PROGRAMMING PROBLEMS

As mentioned in Section 2, we convert the problem (13) to the following form:

minimize w

subject to Ay 6 b, y > 0,
ui = ctjy+ cj0, i = 1, . . . , p,
vi = dtjy+ dj0, i = 1, . . . , p,
p∑
i=1

uivi 6 w,

ui 6 ui 6 ūi , vi 6 vi 6 v̄i , i = 1, . . . , p.

(15)

Let

x = (ui, . . . , up, vi, . . . , vp, y, w),
and let

X = {x|Ay 6 b, y > 0, ui = ctjy+ cj0, vi = dtjy+ dj0, i = 1, . . . , p}.
Then the problem can be put into the form (4).

Let (Ps) be the subproblem:

minimize w

subject to
p∑
i=1

uivi 6 w,

usi 6 ui 6 ūsi , vsi 6 vi 6 v̄si , i = 1, . . . , p,
x ∈ X.

(16)

We tested the following three subdivision schemes of the rectanguler regionDs

represented as the product ofp rectangles
p∏
i=1

([usi , ūsi ] × [vsi , v̄si ]).
(1) Bisect using the variable associated with the longest edge ofDs.
(2) Let (uj∗ , vj∗) be the pair of variables such that the difference ofui, vi and the

underestimating function is maximal at the current solutionxs .
(a) BisectDs by using eitheruj∗ or vj∗ associated with the longer edge ofDs

(b) SubdivideDs into subrectangles at the point(usj∗ , v
s
j∗) using eitheruj∗ or

vj∗ as the subdividing variable
Subdivision scheme 2(a) and 2(b) are similar to theω-subdivision scheme used

in various global optimization algorithms to accelerate convergence. We may be
able to prove finite convergence of these strategies by extending the result presented
in Section 7.3 of [9]. However, it still remains an open question.

Second improvement is to calculate the upper bound and lower bound of vari-
ablesui ’s andvi ’s by solving linear programming problems

minimize{ui| x ∈ X,usj 6 uj 6 ūsj , vsj 6 vj 6 v̄sj , j = 1, . . . , p, j 6= i}
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Table 1. Strategies to be tested

Algorithm Subdivision Bounds

1 1 ×
2 1 1

3 1 2

4 1 3

5 1 2

6 1 3

7 2(a) 3

8 2(b) 3

etc. Since the maximal discrepacy between the underestimating function and the
bilinear function is proportional to the area of the rectangular region, this option
may help improve convergence. We tested three alternative strategies:
(1) Calculate bounds of all variablesui ’s andvi ’s before solving(P̄s).
(2) Calculate bounds of the variable sayul used for subdivision in addition to (1).
(3) Calculate bounds ofvl in addition to (2).

The Table 1 shows the result of experiments. We generated 10 test problem by
fixing p = 4, n = 10,m = 30, εc = 10−5 (relative error),εf = 10−6. Program
was coded in C and the experiment were conducted on Dell Dimension XPS H450.

We see from Figure 4 that subdivision scheme 2 is better than scheme 1, while
there is no significant difference between 2(a) and 2(b). Calculating upper and
lower bounds ofui ’s and vi ’s has significant effects on the performance of the
algorithm. Among the three strategies, version 3 appears to be the best. (Note
that Algorithm 6 using bounding strategy 3 performs best when we fix subdivision
strategy.)

Based upon these observations we conducted experiments for problems with
largerp’s using Algorithm 7 and 8 which useω-subdivision strategy.

We see from Table 2 and Figure 5 that Algorithm 7 performs very well for
LMP’s. Computation time grow much slower as a function ofp compared with
algorithm presented in Kuno–Konno [18].

Figure 6 shows the computation time for Algorithm 7 for LMP’s for different
values ofεc. We see from this that computation time increases very mildly asεc
decrease.

We see from Tables 2, 3 and Figure 5 that Algorithm 7 performs better than
Algorithm 8.
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Figure 4. Performance of Algorithms for LMP’s(p = 4, n = 10, m= 30)

Table 2. Computation time of Algorithm 7.

p (n,m) Average CPU time (s.d.) Average # of iteration (s.d.)

(10,30) 5.9(1.8) 5.4(4.0)

3 (30,10) 51.8(35.8) 34.4(27.7)

(30,50) 59.2(52.1) 30.0(30.4)

(50,30) 80.1(28.3) 22.6(11.7)

(10,30) 9.7(3.0) 8.7(4.8)

4 (30,10) 92.6(84.3) 49.9(44.5)

(30,50) 65.0(40.44) 34.5(29.5)

(50,30) 146.7(167.0) 48.0(45.5)

5 (10,30) 53.3(61.6) 50.7(59.3)

(30,10) 156.2(76.4) 108.2(56.1)

6 (10,30) 30.2(26.6) 27.1(30.0)

7 (10,30) 103.0(97.8) 94.2(92.4)

8 (10,30) 71.9(40.6) 47.0(34.1)
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Table 3. Computation time of Algorithm 8.

p (n,m) Average CPU time (s.d.) Average # of iteration (s.d.)

(10,30) 6.3(2.0) 5.4(3.9)

3 (30,10) 40.0(21.0) 26.2(19.7)

(30,50) 50.7(37.0) 25.0(23.2)

(50,30) 70.2(29.2) 18.5(13.9)

(10,30) 10.1(3.8) 9.5(5.9)

4 (30,10) 96.3(103.4) 49.3(49.7)

(30,50) 74.7(40.0) 39.7(31.5)

(50,30) 147.1(121.6) 48.4(49.8)

5 (10,30) 78.7(109.1) 67.7(89.4)

(30,10) 177.9(79.1) 123.6(56.6)

6 (10,30) 48.6(39.5) 46.2(45.4)

7 (10,30) 196.6(197.2) 157.8(151.7)

8 (10,30) 222.8(127.5) 152.3(93.3)

Figure 5. Computation time for LMP’s(n = 10, m= 30)
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Figure 6. Computation time of Algorithm 7 for LMP’s(p = 4, n = 10, m= 30)as a function
of εc.

Figure 7. Performance of Algorithms for LFP’s(p = 4, n = 10, m= 30).

4.3. RANK-p LINEAR FRACTIONAL PROGRAMMING PROBLEMS

We conducted similar experiments for rank-p LFP’s:

minimize
p∑
j=1

ctjy+ cj0

dtjy+ dj0

subject to Ay 6 b, y > 0.

(17)
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Figure 8. Computation Time for LFP’s(n = 10, m= 30)

To solve this problem, we first apply Charnes-Cooper transformation

z0 = 1/(dtpy+ dp0), (18)

z= yz0, (19)

and reduce the problem to an equivalent problem with one less fractional terms.

minimize
p−1∑
j=1

ctjz+ cj0z0

dtjz+ dj0z0
+ dtpz+ dj0z0

subject to Az− bz0 6 0, (z, z0) > 0,

(20)

which is equivalent to

minimize
p−1∑
j=1

wi + dtpz+ dj0z0

subject toui = ctjz+ cj0z0, i = 1, . . . , p − 1,
vi = dtjz+ dj0z0, i = 1, . . . , p − 1,
ui − viwi 6 0, i = 1, . . . , p − 1,
Az− bz0 6 0, (z, z0) > 0,

(21)

For the proof of the equivalence of (17) and (20), readers are referred to Konno–
Yamashita [17]:

Figure 7 shows the computational results for the case(p = 4, n = 10,m= 30).
We see from this that Algorithm 7 and 8 perform best in this case. Tables 4 and 5
show the results of Algorithm 7 and 8 for larger problems.

We see from Figure 8 that both Algorithm 7 and 8 perform more or less equally.
The computation time is almost the same as LMP’s (Figure 5), but it jumps at
p = 8 as opposed to the mild increase in the case of LMP’s.
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Table 4. Computation time of Algorithm 7.

p (n,m) Average CPU time (s.d.) Average # of iteration (s.d.)

(10,30) 8.1(1.2) 5.7(2.0)

3 (30,10) 34.4(7.2) 9.8(6.0)

(30,50) 35.1(4.6) 6.9(2.9)

(50,30) 77.8(9.3) 6.9(3.1)

(10,30) 23.7(5.2) 16.1(7.2)

4 (30,10) 87.8(30.6) 26.5(16.7)

(30,50) 78.2(24.7) 16.4(10.6)

(50,30) 161.4(29.8) 16.8(7.4)

5 (10,30) 52.2(16.8) 32.2(16.3)

(30,10) 257.7(172.2) 77.1(66.3)

6 (10,30) 111.5(33.4) 49.5(24.9)

7 (10,30) 217.2(70.4) 85.8(33.1)

8 (10,30) 958.4(845.2) 276.4(215.7)

5. Conclusion

We showed in this paper that the branch and bound algorithm can be used as
a practical algorithm for solving rank-p linear fractional programming problems
(LMP) and linear fractional programming problem (LFP), up top = 10 in the case
of LMP’s and up top = 8 in the case of LFP’s.

These results show that our algorithm is superior to the earlier algorithms pro-
posed in the literature. In the case of rank-p LMP’s problem, our algorithm is much
faster than the algorithm of Kuno–Konno [18]. Also, it is slightly faster than the al-
gorithm of Phong-An-Tao [20]. In the case of rank-p LFP’s, our algorithm is much
faster than the algorithm proposed in Konno–Yamashita [17] and Falk–Polacsay
[7]

We observe a large variance of computation time (see Tables 2–5), which is
common to all branch and bound type algorithms. However, an optimal solution is
generated at the earlier stage of computation for almost all test problems. There-
fore, we can now solve problems (1) and (2) ifp is less than 10.
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Table 5. Computation time of Algorithm 8

p (n,m) Average CPU time (s.d) Average # of iteration (s.d)

(10,30) 8.1(0.9) 5.7(1.7)

3 (30,10) 37.8(7.0) 10.2(6.0)

(30,50) 36.3(6.2) 7.7(4.3)

(50,30) 77.7(9.9) 6.9(3.2)

(10,30) 23.3(6.4) 16.8(8.4)

4 (30,10) 87.3(29.4) 26.4(15.9)

(30,50) 79.8(30.0) 16.8(13.0)

(50,30) 151.6(28.2) 14.6(7.4)

5 (10,30) 46.3(13.5) 26.5(13.5)

(30,10) 238.71(165.9) 70.9(65.5)

6 (10,30) 84.9(27.3) 39.4(19.6)

7 (10,30) 154.9(52.9) 55.7(25.6)

8 (10,30) 736.9(917.9) 200.6(237.15)
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