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Abstract. This paper is concerned with a practical algorithm for solving low rank linear multiplicat-
ive programming problems and low rank linear fractional programming problems. The former is the
minimization of the sum of the product of two linear functions while the latter is the minimization of
the sum of linear fractional functions over a polytope. Both of these problems are nonconvex minim-
ization problems with a lot of practical applications. We will show that these problems can be solved
in an efficient manner by adapting a branch and bound algorithm proposed by Androulakis—Maranas—
Floudas for nonconvex problems containing products of two variables. Computational experiments
show that this algorithm performs much better than other reported algorithms for these class of
problems.
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1. Introduction

In this paper, we will discuss a branch and bound algorithm for solving pank-
linear multiplicative programming problems(LMP):

P
minimize Z(c;x + ¢jo)(d'x + djo)

~ ()
subjecttox € X,
and rankp linear fractional programming problems(LFP):
. P Cth'i‘Cjo
minimize _
o dth +djo ()
subjecttox € X,
wherec;,d; € W', cjo,djo € W (j = 1,...,p),x € R andX C R is a

polytope.
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Rank-p LMP (2) is a special case of nonconvex quadratic programming prob-
lems, which is known to be NP-hard even when= 1 [19]. Rank-1 LFP, on
the other hand, is a quasi-convex minimization problem, whose local solution is a
global solution. However, whep > 2, the problem (2) is a nonconvex minimin-
zation problem with multiple local minima.

The problems (1) and (2) have a lot of interesting applications in engineering
and finance. Readers are referred to [1, 11, 12, 15] for such applications. These
problems attracted attention of researchers in global optimization, where one of
its promising research direction is to construct efficient algorithms for practical
problems by exploiting their special structure (see [11]).

To avoid technical complication, we assume that the condition:

C;X+Cjo>0,dtjx+djo>o, VXEX,j:L...,p, (3)

holds throughout the paper. Let us note that this condition is valid for almost all
practical applications.

Let us briefly review some of the earlier algorithmic studies on LMP’s (1) and
LFP’s (2). For a recent survey on LFP’s, readers are referred to [21].

There exists a number of very efficient algorithms for solving rank-1 LMP’s.
For example, variants of parametric simplex algorithms have been developed by
Konno—Kuno [13], Swarup [22] for this problem. In particular, a parametric sim-
plex algorithm proposed in [13] can solve rank-1 LMP’s in no more than twice as
much computation time than that of solving a linear program: mininj&g +
cjolx € X}. Further, it has been proved that the amount of computation time of this
algorithm is average polynomial order under some assumption on the probability
distribution of the problem data [11].

Whenp > 2, LMP’s are much more difficult. A number of practical algorithms
have been developed by Kuno-Konno [18], Phong-An-Tao [20] and others. Com-
putation time grows exponentially asincreases. But it has been demonstrated in
[20] that the careful implementation of a branch and bound algorithm using convex
underestimating function of Phong et al. can solve the LMP’s up topsayl0.

Computational studies of rankdinear fractional programming problem (2) are
less intensive than (1). When= 1, Charnes and Cooper [5] developed an efficient
algorithm using a simplex type procedure. Wher= 2, Konno-Yajima [16] and
Hirsche [8] proposed a parametric simplex algorithm and successive underestim-
ation method, both of which can successfully solve (2) in an efficient manner.
Also, Konno—-Abe [12] proposed a heuristic algorithm for= 3 by employing
Konno-Yajima [16] algorithm for solving rank-2 problems.

When p > 3, Konno-Yamashita applied generalized convex multiplicative
programming algorithm [17] and showed that it can solve the problem (2) up to
p = 5. Also Falk-Polacsay [7] proposed yet another parametric approach, whose
efficiency has not been tested.
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2. Convex Relaxation

Let us consider a quadratically constrained linear programming problem:
n
minimize g(x) = Zcojxj
j=1

(Po) SubjecttOZa;-xj—FZZq;kxjxk <b, i=1...,m, 4)
j=1 j=1 k=1
Ol? <x; < B

It j=1...,n,
X e X.

If, at least oneQ; = (q;-k) e M is not positive semi-definite, then this is a non
convex minimization problem whose local solution may not be a global solution.

Let us note that both LMP’s and LFP’s can be put in the form of (4). In fact,
rank-p LMP (1) is equivalent to

minimize x,.1
p
subject to ) (¢x + ¢;o)(dX + ;o) < xa1, (5)
j=1
xe X.

Also, rankp LFP (2) can be converted to

minimize x,41 + Xp42 + - + X4
subject to (C/X + cjo) — xuy; ([d'X +djo) <O, j=1,....,p, (6)
Xxe X,

under assumption (3).
The basic strategy for solving (4) is to introduce a simple convex underestim-
ating function for each nonconvex tem, x;x; in the rectangular regio@?k =
[af, B x [, 71 by employing the scheme proposed in Andourakis et al. [3].
Whenj = k, we obtain underestimating convex function(convex envelope)

i -2 H i
. q' x5 if q'; >0,
s = {1 ;

4, (@] + B)x; — qj;008] if qj; <O,

(7)

as shown in Figure 1.

PROPOSITION 1. Let

' 0 0 0,0 g0 0 000y if i
g maxX{ajx, + ogx; —ajoy, Bixe + Bex; — BBt if g >0,
9k min{ot?xk + BPx; — ot?ﬂ,?, ﬂ?xk +alx; — ﬁ?a,?} if g% <O.

(8)

Fij,x) = {
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Figure 1. Function—x2 and its convex envelope.

Figure 2. Graph of the functiony.

fi(x;, x) is a convex envelope of the quadratic functignx x;. In particular,
kX p q X j p
the following relation holds:

£l x) = ghxx, Y(x;, x) on DY, )

(o; — Bj) (o — Br)
4

, V(xj,xi)on D?k.

(10)

| fir (s X) — e jxicl < gy

Proof. See [2,3] a

We see from (10) that the maximal difference g@fx;x. and f},(x;, x;) is
proportional to the area of the rectang)@k. Figure 2 and 3 illustrates the relation
of the functiong’, x; x; and f7, (x;, x¢).
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Figure 3. Convex envelope of the functiory.

Let us define a convex minimization problem:

n
minimize g(x) = Zcojxj
j=1
n n n
subjectto Y “aix; + Y Y fh(xx) <bi, i=1....m, (11)
=1 =1 k=1
oz?ng < ?, j=1...,n,
X e X.

PROPOSITION 2.
() If (11) is infeasible, then (4) is also infeasible.
(ii) Let X be an optimal solution of (11).Then
(a) g(X) gives the lower bound of the minimal valueg@k) of (4).
(b) X is an optimal solution of the problem (4)x%fis a feasible solution of (4).

3. A Branch and Bound Algorithm

We showed in the previous section how to calculate a lower bound of the optimal
value of the problem (4). Let us note that the problem (11) is a convex programming
problem, so that it can be solved in an efficient manner. Therefore we can develop
a branch and bound method if we can provide:
(i) an efficient method to calculate a feasible solution of (4) which gives an upper
bound of the optimal solution of (4),
(i) a convergent (exhaustive) branching procedure.
It is generally not easy to calculate a feasible solution of nonconvex minimiz-
ation problem (4). Fortunately, however any solutioe X such thai € [a, B]
gives a feasible solution of (5) and (6). To see this let

p
Xpi1 = Z(CIJ)N( + Cjo)(dtj)N( + djo).

j=1
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Then(X, x,1) is a feasible solution of (5). Also, let
Fpj = (CX+cjo)/(diX+djo), j=1....p.

Then(X, X,41, ... , X,4p) is a feasible solution of (6).
One standard method of branching is the following bisection of the hyper-
rectangleD into two subrectangles by using the longest edge. Let

B —a =max{p) —allj=1,.... n]

and letg! = (af + ﬂ,o)/z We partitionD = [a®, B°] into two rectanglesD; =
la', B*] and D, = [@?, B?] by defining

al:o{?, j=1,...,l’l
J#s,

(Ot +ﬁ)/2, Jj=1,

2 _ J#s,

(a +ﬁt°)/2 J=1,
BY. j=1...n

Branch and Bound Algorithm

Step 0. Lete, > 0,ef > 0,L = —oo, P = {(Py)}. Calculate a locally optimal
solutlonx of (Po) by applying approprlate local search algrithm. Lgt=
= g(X).

Step 1. IfJ = ¢, then stop. Otherwise choose a probléR)) € £ such that
Ly =min{L;|P; € P}

minimize g(x) = Zcojxj

(Py) SubjeCttOZa x]—i—ZZq]kx]xk i=1...,m,
j=1 k=1
ozjngg soJ=1.
X e X.
12)

P =P\ (F).
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Step 2. Generate two subprobleg#, ;) and (P, »):

n

minimize g(x) = Zcojxj

j=1
(Pr+1) SubjecttOZa x]+ZZq]kx]xk i=1,...
j=1k=1
oz§+1<x] <ﬂ§+1, j=1...,n,

Xe X.
n
minimize g(x) = Zcojxj
j=1

(Pi+2) | subject toZa iX; +ZZquxek <b, i=1...

j=1 k=1
a$+2<x]<ﬁj+2, j=1...,n,
X e X.
where
;J’l:a j=1...,n,
z+1 J#d,
(Ot +l3)/2 Jj=d,
ol¥? = j#d,
a+ﬂ>/2 j=d,
ﬁ§+2:ﬁ, j=1...,n
P = P U{(Pr11), (P2 I\ (Py)
s:zs—{—l
By —ay=ma{p; —ailj=1...,n]

289

Step 3. GeneratéP,)(s = [ + 1,1 + 2) by replacing nonconvex terqg.kxjxk by

convex underestimating functiofjk (xj, k).

Step 4. SolvgP,)(s = [ + 1,1 + 2). If (P,) is infeasible, deleteK,) from &

Otherwise lex* be an optimal solution ofX,). If

n n n n
D2 = ) Fig ) <y,

j=1 k=1 j=1 k=1

thenUs = 3", co;xj and go to Step 5. Otherwide, =  _; co;x; and

go to Step 6.
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Step 5. IfU; < U,thenX = x*, U = Z’}Zl CojX; and delete all subproblem (P
from &# such thatL, > U.

Step6. L=minL,. If U — L > ¢., go to Step 1. Otherwise.-convergence has
been reached. The global minimum solutionis given byxX. a

THEOREM 1. The branch and bound algorithm proposed above terminates in
finitely many steps.

Proof. The subdivision scheme is exhaustive as proved in Konno—Thach-Tuy
[11] (Corollary 6.3) or Horst—Tuy [10]. O

4. Computational Experiments
4.1. GENERATION OF TEST PROBLEMS

We tested the algorithm proposed in the previous section on paidP’s:

P
minimize ) "(C}y + c;0)(dy + djo)

~ (13)
subjecttoAy < b,y > 0,
and rankp LFP’s:
minimize p M
o diy+djpo (14)

subjecttoAy < b,y > 0,

wherec;, d;,y € W', cjo,djo € R* (j =1,...,p), A = (a;;) € R™", b € ®".

All elements of the matriXA and vectotb, ¢;'s, d;’s are randomly generated from

the uniform distribution in certain interval& < [0.01,1.0],b € [0.1, 10.0], so

that the feasible region is always non-empty and bounded. Also, we chase
[-0.1,0.1],d; € [-0.1,0.1], Vi. Also, cjo,djo are chosen in such a way that

the condition (3) is satisfied. Ten test problems are generated for each size of the
parametelp, n, m).

Performance of the algorithm can be different for other class of test problems.
But the main purpose of the test is to compare the performance of the present
algorithm with earlier algorithms, where the above class of problems are used as
test problems.
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4.2. RANK-p LINEAR MULTIPLICATIVE PROGRAMMING PROBLEMS
As mentioned in Section 2, we convert the problem (13) to the following form:
minimize w
subjecttoAy < b,y > 0,
ul:dly+c10’ i:]-””7p7

U,':dtjy—l-djo, i:1,...,p, (15)
p
Zuivi <w,
i=1
w, <u; <up,v;, <KV <y, i=1...,p.

Let

X: (ui"" 7u[77vi”” 7U[77y7w)’
and let

X ={XAy < b,y >0 u :C’jy—i—cjo,vi :d;y—i—djo, i=1,...,p}

Then the problem can be put into the form (4).
Let (P;) be the subproblem:

minimize w

14
subject to Z uv; < w,

i=1
w; <u; <uj,v;<v <o, i=1...,p,

(16)

We tested the following three subdivision schemes of the rectanguler rBgion
p
represented as the productm’rectangleﬂ([zf, ] x v, vi]).

i=1
(1) Bisect using the variable associated with the longest eddg .of
(2) Let(u;+, v;+) be the pair of variables such that the difference,ofv; and the
underestimating function is maximal at the current soluitin
(a) BisectD; by using eitheu ;- or v« associated with the longer edge f
(b) SubdivideD; into subrectangles at the poi@t’., v}.) using eithem - or
v;+ as the subdividing variable
Subdivision scheme 2(a) and 2(b) are similar todhgubdivision scheme used
in various global optimization algorithms to accelerate convergence. We may be
able to prove finite convergence of these strategies by extending the result presented
in Section 7.3 of [9]. However, it still remains an open question.
Second improvement is to calculate the upper bound and lower bound of vari-
ablesu;’s andv;’s by solving linear programming problems

minimize{u;| x € X, uj <u; <uj,v; <v; <), j=1...,p,j#i}
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Table 1. Strategies to be tested

Algorithm  Subdivision  Bounds

e

2(a)

1
2
3
4
5
6
7
8 2(b)

X
1
2
3
2
3
3
3

etc. Since the maximal discrepacy between the underestimating function and the
bilinear function is proportional to the area of the rectangular region, this option
may help improve convergence. We tested three alternative strategies:

(1) Calculate bounds of all variablag's andv;’s before solving(P;).

(2) Calculate bounds of the variable sayused for subdivision in addition to (1).

(3) Calculate bounds af; in addition to (2).

The Table 1 shows the result of experiments. We generated 10 test problem by
fixing p = 4,n = 10, m = 30,¢. = 107> (relative error),e; = 107°. Program
was coded in C and the experiment were conducted on Dell Dimension XPS H450.

We see from Figure 4 that subdivision scheme 2 is better than scheme 1, while
there is no significant difference between 2(a) and 2(b). Calculating upper and
lower bounds ofu;’s and v;’s has significant effects on the performance of the
algorithm. Among the three strategies, version 3 appears to be the best. (Note
that Algorithm 6 using bounding strategy 3 performs best when we fix subdivision
strategy.)

Based upon these observations we conducted experiments for problems with
larger p’s using Algorithm 7 and 8 which use-subdivision strategy.

We see from Table 2 and Figure 5 that Algorithm 7 performs very well for
LMP’s. Computation time grow much slower as a functionpop€ompared with
algorithm presented in Kuno—Konno [18].

Figure 6 shows the computation time for Algorithm 7 for LMP’s for different
values ofe.. We see from this that computation time increases very mildly.as
decrease.

We see from Tables 2, 3 and Figure 5 that Algorithm 7 performs better than
Algorithm 8.
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timelsec]
s 8

Figure 4. Performance of Algorithms for LMP’6p = 4, n = 10, m = 30)

Table 2. Computation time of Algorithm 7.

p (n,m) Average CPUtime (s.d.) Average # of iteration (s.d.)
(10,30) 5.9(1.8) 5.4(4.0)
3 (30,10) 51.8(35.8) 34.4(27.7)
(30,50)  59.2(52.1) 30.0(30.4)
(50,30)  80.1(28.3) 22.6(11.7)
(10,30) 9.7(3.0) 8.7(4.8)
4  (30,10) 92.6(84.3) 49.9(44.5)
(30,50)  65.0(40.44) 34.5(29.5)
(50,30) 146.7(167.0) 48.0(45.5)
5 (10,30) 53.3(61.6) 50.7(59.3)
(30,10) 156.2(76.4) 108.2(56.1)
6 (10,30) 30.2(26.6) 27.1(30.0)
7 (10,30) 103.0(97.8) 94.2(92.4)
8 (10,30) 71.9(40.6) 47.0(34.1)

293
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Table 3. Computation time of Algorithm 8.

p (n,m) Average CPU time (s.d.) Average # of iteration (s.d.)

(10,30) 6.3(2.0) 5.4(3.9)
3  (30,10) 40.0(21.0) 26.2(19.7)
(30,50) 50.7(37.0) 25.0(23.2)
(50,30) 70.2(29.2) 18.5(13.9)
(10,30) 10.1(3.8) 9.5(5.9)
4 (30,10) 96.3(103.4) 49.3(49.7)
(30,50) 74.7(40.0) 39.7(31.5)
(50,30) 147.1(121.6) 48.4(49.8)
5 (10,30) 78.7(109.1) 67.7(89.4)
(30,10) 177.9(79.1) 123.6(56.6)
6 (10,30) 48.6(39.5) 46.2(45.4)
7 (10,30) 196.6(197.2) 157.8(151.7)
8 (10,30) 222.8(127.5) 152.3(93.3)
250
200
i
<5 150
H
=
2 10
5]
50
0
3 4 5 6 7 8
P
—— Algorithm 7 —&— Ajgorithm 8

Figure 5. Computation time for LMP’sn = 10, m = 30)
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107-3 1074 10-5 1076 1077
T
Figure 6. Computation time of Algorithm 7 for LMP’$p = 4, n = 10, m = 30) as a function
of ec.

CPY me{sec)
«uBIRUEDD

Figure 7. Performance of Algorithms for LFP® = 4, n = 10, m = 30).

4.3. RANK-p LINEAR FRACTIONAL PROGRAMMING PROBLEMS
We conducted similar experiments for rapk-FP’s:
P Ctjy +cjo

= dy +djo (17)
subjecttoAy < b,y > 0.

minimize
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1200

1000

CPU time[sec]

200

—&— Algorithm 7 —%— Algorithm 8
Figure 8. Computation Time for LFP’¢n = 10, m = 30)

To solve this problem, we first apply Charnes-Cooper transformation

z0 = 1/(dy +dp0), (18)
Z = Yzo, (19)
and reduce the problem to an equivalent problem with one less fractional terms.
p7t c.z+ cjoz0
minimize  --—" 1 d' z+d;
& diz+djoco et doto (20)
subjectto Az — bzg <0, (z,z0) = O,
which is equivalent to
p—1
minimize " w; + d,z+ djoz0
j=1
subjecttou; =cjz+cjozo, i=1,...,p—1, (21)
vi=d3~2+dj020, i=1,...,p—1,
u—vw; <0, i=1...,p—1,
Az — bZO < 09 (Za ZO) > 09

For the proof of the equivalence of (17) and (20), readers are referred to Konno—
Yamashita [17]:

Figure 7 shows the computational results for the ¢ase 4, n = 10, m = 30).
We see from this that Algorithm 7 and 8 perform best in this case. Tables 4 and 5
show the results of Algorithm 7 and 8 for larger problems.

We see from Figure 8 that both Algorithm 7 and 8 perform more or less equally.
The computation time is almost the same as LMP’s (Figure 5), but it jumps at
p = 8 as opposed to the mild increase in the case of LMP's.
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Table 4. Computation time of Algorithm 7.

p (n,m) Average CPUtime (s.d.) Average # of iteration (s.d.)

(10,30)  8.1(1.2) 5.7(2.0)
3 (30,10) 34.4(7.2) 9.8(6.0)
(30,50)  35.1(4.6) 6.9(2.9)
(50,30)  77.8(9.3) 6.9(3.1)
(10,30)  23.7(5.2) 16.1(7.2)
4 (30,10) 87.8(30.6) 26.5(16.7)
(30,50)  78.2(24.7) 16.4(10.6)
(50,30) 161.4(29.8) 16.8(7.4)
5 (10,30) 52.2(16.8) 32.2(16.3)
(30,10) 257.7(172.2) 77.1(66.3)
6 (10,30) 111.5(33.4) 49.5(24.9)
7 (10,30) 217.2(70.4) 85.8(33.1)
8 (10,30) 958.4(845.2) 276.4(215.7)

5. Conclusion

We showed in this paper that the branch and bound algorithm can be used as
a practical algorithm for solving rank-linear fractional programming problems
(LMP) and linear fractional programming problem (LFP), upte= 10 in the case

of LMP’s and up top = 8 in the case of LFP’s.

These results show that our algorithm is superior to the earlier algorithms pro-
posed in the literature. In the case of rgmk-MP’s problem, our algorithm is much
faster than the algorithm of Kuno—Konno [18]. Also, it is slightly faster than the al-
gorithm of Phong-An-Tao [20]. In the case of rapk-FP’s, our algorithm is much
faster than the algorithm proposed in Konno—Yamashita [17] and Falk—Polacsay
[7]

We observe a large variance of computation time (see Tables 2-5), which is
common to all branch and bound type algorithms. However, an optimal solution is
generated at the earlier stage of computation for almost all test problems. There-
fore, we can now solve problems (1) and (2pifs less than 10.
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Table 5. Computation time of Algorithm 8

p (n,m) Average CPUtime (s.d) Average # of iteration (s.d)

(10,30)  8.1(0.9) 5.7(1.7)
3 (30,100 37.8(7.0) 10.2(6.0)
(30,50)  36.3(6.2) 7.7(4.3)
(50,30)  77.7(9.9) 6.9(3.2)
(10,30)  23.3(6.4) 16.8(8.4)
4 (30,10)  87.3(29.4) 26.4(15.9)
(30,50)  79.8(30.0) 16.8(13.0)
(50,30) 151.6(28.2) 14.6(7.4)
5 (10,30)  46.3(13.5) 26.5(13.5)
(30,10) 238.71(165.9) 70.9(65.5)
6 (10,30) 84.9(27.3) 39.4(19.6)
7 (10,30) 154.9(52.9) 55.7(25.6)
8 (10,30) 736.9(917.9) 200.6(237.15)
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